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Why	  look	  at	  IOPs?	  

Chl	  is	  the	  historical	  OC	  product	  
Rou*nely	  measured	  at	  sea	  
Primary	  Produc*on	  
Proxy	  for	  phytoplankton	  biomass	  
Easy	  to	  empirically	  derive	  from	  reflectance	  (Rrs	  ra*o	  à	  Chl)	  

	  Chl	  is	  the	  OC	  product	  with	  the	  most	  
complete	  valida*on	  

Several	  issues	  with	  Chl:	  
•  The	  C/Chl	  ra*o	  is	  not	  constant	  
•  Chl	  is	  not	  directly	  related	  to	  reflectance	  
•  Phytoplankton	  (≈Chl)	  is	  only	  one	  of	  the	  

components	  that	  determine	  the	  ocean	  
color	  signal	  
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Global	  surface	  measurements	  (I8/I9,	  A20/A22,	  P16N/P16S,	  P18,	  BATS;	  N	  =	  371)	  
US	  Global	  Ocean	  Carbon	  &	  Repeat	  Hydrography	  Cruises.	  

Mean Absorption Component Spectra  
(Open Ocean, consistently sampled and processed) 

95%	  c.i.	  

at(λ)	  =	  aw(λ)	  +	  aph(λ)	  +	  acdom(λ)	  +	  adet(λ)	  	  	  
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CDOM	  absorp<on	  frequently	  dominates	  absorp<on	  in	  the	  blue	  



Chl and the band ratio algorithm 

MODIS operational Chl: Maximum Band Ratio 
algorithm (MBR)	
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Chl = 10^(a0  + a1*X + a2*X^2  + a3*X^3  + a4*X^4 )

Siegel et al. [2005] 
Morel & Gentili [2009] 
Loisel et al. [2010] 
Szeto et al. JGR [2011] analysis of NOMAD data 
Sauer et al. [2012] for MODIS 

In	  waters	  with	  high	  CDM	  MBR	  algorithm	  will	  
overes*mate	  Chl	  	  

were analyzed both visually and quantitatively using statis-
tical measures.
[24] To evaluate the combined effects, a stepwise ordinary

least squares linear regression was used to examine the rela-
tive importance of the two effects. The regression is defined
as the following:

D ¼ b1 þ b2 log10
aph443
Chla

! "
þ b3 log10

acdm443
Chla

! "
; ð9Þ

where b1, b2, and b3 are resulting coefficients from each
analysis. Specifically, we used the MATLAB routine “step-
wise fit,” (2007, MathWorks, Natick, Massachusetts) with
default settings.
[25] In the stepwise regression, the parameter with the

higher correlation withD is used to predictD in the first step.
This parameter explains more of the variance of D than the
other. Then, the second parameter is added if it significantly
reduces the residuals. The significance is based on a com-
parison of the variance (F test) with or without the potential
parameter (P < 0.05).
[26] A common misconception is that the coefficients from

the regression analyses indicate the relative importance of the
effects. Rather, the coefficients are affected by the relative
magnitudes of acdm443/Chla and aph443/Chla, whereas the
sequence of parameters used in the model indicates their
relative importance. The parameter used to fit the initial

model of every stepwise regression is the parameter with the
greater influence on algorithm uncertainty.

4. Results

4.1. Oceanic Biases in Absorption
[27] Oceanic biaseswere present when using the absorption‐

based approximation to MBR, as illustrated for l = 490 nm in
Figure 4. These biases were comparable to those about the
OC4 algorithm when using all wavelength combinations. The
replacement of MBR with the total absorption approximation
served as an independent method to verify the existence of the
oceanic biases, and indicates that these biases are related to true
(inherent) optical differences among the oceans.

4.2. Effect of Variation in Backscattering
[28] Using both the absorption and modeled backscattering

coefficients in the approximation of MBR resulted in minor
changes to results shown in Figure 4. Polynomials fitted to the
IOP ratio, for various bb models and wavelengths, improved
the correlation by 4 to 12%. The ocean biases remained
unchanged.

4.3. Understanding the Source of the Oceanic Biases
4.3.1. Effects of Colored Detrital Matter
[29] The effect of CDM on the algorithm uncertainty is

demonstrated in Figure 5. As shown in the Global plot of

Figure 5. The effects of CDM on the oceanic biases: acdm443/Chl. Systematic variation in acdm443/Chla,
as color coded, corresponds to variation above and below the algorithm curve, i.e., variation in D for
NOMAD (n = 696). Note that the axes and color scales are logarithmic. The solid curve represents the
OC4v.6 algorithm.
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were analyzed both visually and quantitatively using statis-
tical measures.
[24] To evaluate the combined effects, a stepwise ordinary

least squares linear regression was used to examine the rela-
tive importance of the two effects. The regression is defined
as the following:

D ¼ b1 þ b2 log10
aph443
Chla

! "
þ b3 log10

acdm443
Chla

! "
; ð9Þ

where b1, b2, and b3 are resulting coefficients from each
analysis. Specifically, we used the MATLAB routine “step-
wise fit,” (2007, MathWorks, Natick, Massachusetts) with
default settings.
[25] In the stepwise regression, the parameter with the

higher correlation withD is used to predictD in the first step.
This parameter explains more of the variance of D than the
other. Then, the second parameter is added if it significantly
reduces the residuals. The significance is based on a com-
parison of the variance (F test) with or without the potential
parameter (P < 0.05).
[26] A common misconception is that the coefficients from

the regression analyses indicate the relative importance of the
effects. Rather, the coefficients are affected by the relative
magnitudes of acdm443/Chla and aph443/Chla, whereas the
sequence of parameters used in the model indicates their
relative importance. The parameter used to fit the initial

model of every stepwise regression is the parameter with the
greater influence on algorithm uncertainty.

4. Results

4.1. Oceanic Biases in Absorption
[27] Oceanic biaseswere present when using the absorption‐

based approximation to MBR, as illustrated for l = 490 nm in
Figure 4. These biases were comparable to those about the
OC4 algorithm when using all wavelength combinations. The
replacement of MBR with the total absorption approximation
served as an independent method to verify the existence of the
oceanic biases, and indicates that these biases are related to true
(inherent) optical differences among the oceans.

4.2. Effect of Variation in Backscattering
[28] Using both the absorption and modeled backscattering

coefficients in the approximation of MBR resulted in minor
changes to results shown in Figure 4. Polynomials fitted to the
IOP ratio, for various bb models and wavelengths, improved
the correlation by 4 to 12%. The ocean biases remained
unchanged.

4.3. Understanding the Source of the Oceanic Biases
4.3.1. Effects of Colored Detrital Matter
[29] The effect of CDM on the algorithm uncertainty is

demonstrated in Figure 5. As shown in the Global plot of

Figure 5. The effects of CDM on the oceanic biases: acdm443/Chl. Systematic variation in acdm443/Chla,
as color coded, corresponds to variation above and below the algorithm curve, i.e., variation in D for
NOMAD (n = 696). Note that the axes and color scales are logarithmic. The solid curve represents the
OC4v.6 algorithm.
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Chl	  retrievals	  from	  MBR	  algorithm	  are	  biased	  
by	  other	  op*cally	  ac*ve	  components.	  CDOM	  
in	  par*cular	  

From Szeto et al. JGR [2011]	  
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Semi-‐analy<c	  OC	  models	  can	  account	  for	  CDOM	  and	  Chl	  
 

Gordon	  et	  al.	  (1988)	  

Non-‐water	  components	  of	  absorp*on	  and	  
scadering	  are	  expressed	  as	  known	  shape	  
func*ons	  with	  unknown	  magnitudes	  
which	  are	  retrieved	  through	  non-‐linear	  
least-‐squares	  figng.	  
	  
	  
Valida*on	  sta*s*cs	  for	  ChlGSM	  with	  in	  situ	  
data	  are	  as	  good	  as	  for	  ChlMBR	  and	  almost	  
as	  good	  with	  satellite	  data.	  

aph(λ)	  =	  Chl	  aph*(λ)	  
acdm(λ)	  =	  acdm(443)	  exp(-‐S(λ	  –	  443))	  
bbp(λ)	  =	  bbp(443)	  (λ/443)-‐η	  

For	  example,	  the	  GSM	  model	  (Garver	  &	  Siegel,	  1997;	  Maritorena	  et	  al.,	  2002)	  simultaneously	  
retrieves	  three	  relevant	  proper*es:	  Chl,	  CDM	  [acdom(443)+adet(443)]	  &	  BBP	  [bbp(443)]	  
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Comparison	  of	  MBR	  Chl	  and	  GSM	  Chl	  and	  influence	  of	  CDOM	  
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Contribu*on	  of	  CDM	  to	  absorp*on	  
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Regional-‐scale	  correla*on	  between	  Chl	  and	  SST	  in	  the	  Tropical	  ocean	  is	  
almost	  iden*cal	  
Mission	  trends	  show	  same	  spa*al	  paderns	  but	  different	  magnitudes	  

Siegel	  et	  al.,	  in	  Press	  RSE	  

Correla*on	  
Chl	  vs	  SST	  

Mission	  Trend	  



Particulate backscattering: 
Particle Size Distribution (size index) 
Primary Production 
POC, PIC 

So… 
It’s worth looking at IOPs for the purpose of correcting the Chl estimates from empirical ratio 
algorithms (or generate a Chl estimate from the IOPs) 
Another good reason to look at IOPs is because they provide links to biogeochemistry 

1998]. Hence, a strong negative correlation is observed
between x and log10 (No) (R = !0.97). Frequency distribu-
tion plots show that 78.4% of the x observations have values
between 3.5 and 5, with a mean of 4.22, a median of 4.15
and a standard deviation of 0.59 (Figure 8a). Figure 8b
shows the corresponding histogram for log10 (No). Its mean
is 15.58, with a median of 15.71 and a standard deviation of
0.75.
[24] The Monte Carlo simulations used in the develop-

ment of the mean operational LUTs allow for the estimation
of the endogenous sources of uncertainty due to variability
in model parameters (Figure 2). All valid LUTs at the
respective h value (Figure 2c) were used to retrieve an
ensemble of PSD parameters x and No at each pixel with a
valid h value (Figure 6a). Thus, standard deviations of the
PSD parameter retrievals were mapped (Figures 9a and 9b).
The highest uncertainty levels in the Junge slope retrieval
are "0.2 and occur for the lowest (negative) h retrievals.
This model based uncertainty then decreases rapidly with
increasing h values and is only 0.04 for h = 1, which is the
most common value (Figures 2a and 2c), and drops to 0.01
for h > 1.6. These endogenous uncertainties are driven
primarily by a combination of the imaginary index of
refraction and the maximum diameter of integration. For
much of the ocean area (the subtropical oligotrophic gyres
and their transition zones), the endogenous uncertainty in

the Junge slope retrieval is small (Figure 9a). Higher
uncertainty tends to occur in higher productivity areas
(Figure 9a) but overall uncertainty levels for x are consid-
erably smaller than the retrieved values (Figure 8a).
[25] In contrast to the Junge slope uncertainty pattern, the

uncertainty levels for the No retrievals have a nearly uniform
spatial pattern in terms of standard deviations in log10 space
(Figure 9b; note the color scale). For most cases, log10 (No)
uncertainty levels are about 0.4. The No uncertainty is
driven primarily by the variability in the real index of
refraction, which was allowed to vary widely in the Monte
Carlo simulations (Table 1); thus this estimate of endoge-
nous sources of uncertainty for log10 (No) should be
interpreted as an upper bound. In all, the endogenous
sources of uncertainty for retrievals of x and log10 (No)
are small relative to the magnitude of typical retrievals
(Figures 7 and 9).

3.3. Derived PSD Products and Their Uncertainties

[26] Values of phytoplankton-sized (0.5 < D < 50 mm)
particle abundance (particles/m3) span nearly 3 orders of
magnitude for August 2007 (Figure 10a). As expected,
higher total particle abundances are found corresponding
to locations with higher Chl levels (Figure 4). Figures 10b–
10d show the partitioned number concentration among
picophytoplankton-, nanophytoplankton-, and microphyto-

Figure 7. Base products of the PSD algorithm for August 2007. (a) Map of the retrieved PSD Junge
slope, x. (b) Map of the retrieved value of No in log10 space. The hyperbolic slope x and log10 (No) are
strongly anticorrelated (R = !0.96).
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between 0.6 and 18 mm. The final PSD for a given sample
was calculated by averaging results from 8 (sometimes a
few more) replicate measurements, each of which was made
on 0.5 mL of the sample.

3. Results

[17] Our algorithm was applied to determine the distri-
bution of g in the global ocean from the Level-3 monthly
binned Lwn(l) data collected by the SeaWiFS sensor from
1998 to 2002. The results presented are based primarily on
data from the year 2001 which is not influenced by the El
Niño/La Niña events that affect the tropical Pacific every 2
to 7 years. We note, however, that the main spatio-temporal
patterns reported here, as well as the relationships between
g, bbp(l) and Chl, do not change drastically from one year
to another. For comparison, some results from satellite data
collected in 1998, when a strong El Niño/La Niña episode
occurred, are also provided.
[18] The monthly mean g values of the year 2001 were

averaged to obtain the global distribution of yearly g
(Figure 3). Figure 4 shows a histogram of g for 2001
obtained from data presented in Figure 3. The mean
value of g for the global ocean is 1.37 (with a standard
deviation ±0.42). The overall range of variability in g is in
good agreement with predictions from earlier studies
[Sathyendranath et al., 1989; Hoge and Lyon, 1996; Carder
et al., 1999; Ciotti et al., 1999; Reynolds et al., 2001; Toole
and Siegel, 2001; Stramska et al., 2003; Cota et al., 2003]
that showed that the wavelength dependence of bbp ranges
from l!3 to l0 (see also caption of Figure 3). According to
our study, the values of g higher than 2.5 are relatively
uncommon and represent only 6.1% of the ocean surface in
2001. High g values are observed in subtropical gyres

where large scale downwelling is expected, and where
primary production is mostly sustained by regeneration
processes involving picoplankton [Falkowski et al., 1998].
The maximum g of 3.5 is observed in the center of the South
Pacific gyre, where the surface chlorophyll concentration,
Chl, is often as low as 0.02 mg m!3. This maximum gwithin
the biologically poorest area of the ocean [Claustre and
Maritorena, 2003] reinforces the idea of a system dominated
by relatively high proportion of submicron particles, includ-
ing non-living colloidal matter [Dandonneau et al., 2003].
The lowest g values in the range 0–0.5 in Figure 3 are
found in coastal areas and at high and temperate latitudes.
Compared to subtropical gyres, these areas are characterized
by much higher surface Chl (up to a factor of"10) supported
by net inputs of new nutrients injected from below the
euphotic zone by advection or vertical mixing, and/or
terrestrial sources.
[19] The highest values of g in the South Pacific gyre are

consistent with our field measurements of particle size
distribution (PSD), which indicated a relatively large role
of submicrometer particles in that region. The PSD mea-
surements of surface water samples during the BIOSOPE
cruise (see Figure 5a for the cruise track) showed that the
slope of PSD is much steeper in the submicrometer range
than for larger particles (Figures 5b and 5c). The results in
Figure 5b indicate that a model of PSD with a single slope x
over the entire size range examined can lead to significant
underestimation of submicrometer particle concentration.
For example, we estimated that the total particle volume
in the 0.2–1 mm size range is lower by a factor of 10 if we
apply a single slope of x = !3.3 obtained from a broad size
spectrum that extends to particle size of 10 mm instead of
the measured slope of !6.33 in the submicron range.

Figure 3. Global map of annual mean value of g in 2001 derived from SeaWiFS imagery. The red
frames identified by the numbers 1 to 5 show specific regions where in situ data of g were collected in
2001. These data were extracted from the SeaBASS archive. For each data set the mean and standard
deviation values of g are as follows; region 1: 1.94 ± 0.5; region 2: 2.8 ± 0.36; region 3: 2.01 ± 0.55;
region 4: 1.06 ± 0.42; and region 5: 1.17 ± 0.68. Only two coincident satellite-derived and field data of g
are available from these regions. The satellite to in situ ratio of g for these two matchup data points are
0.35 and 0.90.
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data fell within two (2 × RMSE) and three standard devia-
tions (3 × RMSE) respectively. The match‐up dispersion is
greater at lower Sfm values. This occurs because the differ-
ence in R̂rs

sat(443) options associated with Sfm
LUT are closer

together at lower Sfm and thus were more difficult to dif-
ferentiate. The r2 and RMSE for regression between Sfm

sat and
Sfm
HPLC is 0.6 and 12.64 for all for all data points and 0.85 and

6.3 for data that fell within one standard deviation, respec-
tively (Figure 13).
[31] We considered the performance of our method in the

context of other phytoplankton functional type retrieval
approaches. This approach retrieves only percent micro-
plankton at discrete bins, while other approaches retrieve
additional size classes or functional types. However, an
important aspect of this study is the consideration of
detectable ranges given the sensitivity of the satellite radi-
ometer and the second order impact phytoplankton size
imparts on Rrs

sat(l). Each phytoplankton functional type

retrieval method has a different measure of validation suc-
cess. To be able to compare the performance of the Sfm

sat

retrieval in this study with other approaches, we calculated
the identical statistical measure presented in other studies
with our data (Table 2). Our validation is robust in com-
parison to other approaches. In all but one instance, our
retrieval was closer to the in situ data. The Ciotti and Bricaud
[2006] validation was significantly stronger (RMSE of
0.172) than ours (RMSE of 12.64). Their effort was regional
focusing on continental shelf waters off Brazil, while this
effort is global. Considering the study of Uitz et al. [2006],
who retrieved phytoplankton cell size in the global ocean, the
mean of their validation measure (log10[predicted/mea-
sured]) was −0.012, while the same statistic for our valida-
tion was considerably smaller (0.0054), indicating greater
validation fidelity. Kostadinov et al. [2009] validate the
particle size distribution slope (r2 = 0.21) and the abundance
of reference particles of 2 mm size (r2 = 0.256). Our vali-

Figure 12. (a) Global satellite‐retrieved map of Sfm
sat for May 2006. (b) Data masks for May 2006. Pixels

with geophysical values above ([Chlsat] > 1.75 mg m−3 and/or acdm
sat (443) > 0.17 m−1) or below ([Chlsat] <

0.05 mg m−3) detection thresholds are masked.
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Phytoplankton absorption: 
Pigment composition 
Community structure 
Physiology 

CDM (non-algal) absorption: 
Photochemistry 
Correct empirical Chl retrievals 

bbp slope; Loisel et al., 2006 

PSD; Kostadinov et al., 2009 

Phytoplankton size; Mouw & Yoder, 2010 

NPP; Behrenfeld et al., 2005 



Where are we at with IOP algorithms and products? 

Several	  IOP	  products	  are	  available	  through	  the	  NASA	  OBPG	  ocean	  color	  web:	  
	  -‐	  acdm(443),	  aph(443),	  bbp(443)	  from	  different	  models	  
	  -‐	  IOPs	  are	  not	  “standard”	  products,	  they	  are	  “evalua*on”	  products	  

	  
Several	  workshops	  and	  evalua*on	  exercises	  for	  IOP	  products	  and	  algorithms:	  

	  SeaBAM,	  1996	  
	  OCBAM,	  2005	  
	  IOCCG,	  2005	  
	  NASA	  IOP	  Workshops,	  2008,	  2010	  
	  ESA	  CCI,	  2013	  



Generalized ocean color inversion model for retrieving
marine inherent optical properties
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Ocean color measured from satellites provides daily, global estimates of marine inherent optical proper-
ties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the
water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed
and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide
discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify simi-
larities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the
development of the generalized IOP (GIOP) model software that allows for the construction of different
SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits
isolation and evaluation of specific modeling assumptions, construction of SAAs, development of region-
ally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the
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•  Goal was mostly to look under the hood of 7 IOP algorithms to interpret their 
differences and assess their suitability for global application 

•  Since SA algorithms are all based on the same fundamental relationship between Rrs 
and IOPs, the differences among them come from their overall design 

–  Assumptions 
–  Parameterization of the absorption and backscattering components 
–  Inversion or optimization approach 
 

•  Seven IOP algorithms were tested against the NOMAD in situ data set and some 
satellite data 

•  NASA OBPG developed the generalized IOP (GIOP) model software which allows the 
user to choose the parameterization and inversion method of a SA ocean color 
model. 

The	  NASA	  OBPG	  IOP	  algorithms	  Workshops	  (2008,	  2010)	  

Generalized	  ocean	  color	  inversion	  model	  for	  retrieving	  
marine	  inherent	  op<cal	  proper<es	  



Table 2: Model output variables.

Model Output variable Reference
Kd(489) C a(λ) aph(λ) adg(λ) bb(λ) γ S dg aph(555)/aph(443)

A ×∗ ×$ × × × × × × × Smyth et al. (2006)
B ×∗ ×$ × × × × × × × Smyth et al. (2006)
C ×∗ × × × × × × × × Devred et al. (2011)
D ×∗ × × × × × × × × Lee et al. (2002)
E ×∗ ×$ × × × × × × × Lee et al. (2009)
F ×∗ ×$ × × × × × × × Lee et al. (1998, 1999)
G ×∗ × × × × × × × × Maritorena et al. (2002)
H ×∗ × × × × × × × × Maritorena et al. (2002)
I ×∗ × × × × × × × × Franz and Werdell (2010)
J ×∗ × × × × × × × see#

K ×∗ × × × × × × × × Doerffer and Schiller (2000)
L × O’Reilly et al. (2000)
M × O’Reilly et al. (2000)
N × O’Reilly et al. (2000)
O × Morel et al. (2007)
P × Hu et al. (2012)
Q × NASA (2009)

∗ Computed following Eq. (6) with a(489) and bb(489) as input from the model.
$ Computed following Eq. (1) with aph(443) as input from the model.
# This model represents a Case-1 approach that uses Model L as input. The model computes IOPs as a function of C through com-
bining relationships proposed by: Gordon et al. (1983); Buiteveld et al. (1994); Pope and Fry (1997); Morel (2009); Bricaud et al.
(2010); Brewin et al. (2011).
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Abstract23

Satellite-derived remote-sensing reflectance (Rrs) just above the sea surface can be used for map-

ping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent

Optical Properties (IOPs) of the water, at global scales for use in climate-change studies. Prior to

generating such products, suitable algorithms have to be selected that are appropriate for the pur-

pose. Algorithm selection needs to account for both qualitative and quantitative requirements. In

this paper, we develop an objectivemethodology designed to rank the quantitative performance of

a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical

Marine Algorithm Data set (NOMAD). Using in situ Rrs as input to the models, the performance

of eleven semi-analytical models, as well as five empirical chlorophyll algorithms and an empiri-

cal diffuse attenuation coefficient algorithm, are ranked for spectrally-resolved IOPs, chlorophyll

concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective
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11	  semi-‐analy*cal	  algorithms	  
	  (IOPs,	  Chl,	  Kd(490))	  

6	  empirical	  algorithms	  (Chl)	  

29	  variables	  

•  Tested with the NOMAD in situ data set 
•  Developed an objective classification designed to rank the quantitative performance of the models 

based on various univariate statistics.    

Aim is to establish an objective methodology for OC algorithm selection based on 
performance and suitability for use in climate-change studies.  



ESA	  OC-‐CCI	  

Brewin	  et	  al.,RSE	  	  In	  Press	  



•  No perfect algorithm that does it all at all 
wavelengths 

•  The performance of each model varies 
depending on product and wavelength 

•  Most semi-analytic models perform well in 
predicting total absorption, at(λ), and total 
backscattering, bb(λ) 

•  Performance is generally degraded when 
decomposing at into aph and acdm 

•  Difficult to rank the performance of the 
algorithms, as many of the models have 
overlapping error bars.  

OC-CCI and NASA IOP Workshops Main Conclusions 

Issues with the in situ data: 
•  No independent data set for model testing 
•  Time and space biases 
•  Mesotrophic waters are over-represented 
•  Need measurement uncertainty 

quantification (closure issues) 
Brewin	  et	  al.,RSE	  	  In	  Press	  



Summary	  

•  IOPs	  are	  important	  for	  ocean	  biogeochemistry	  studies	  

•  IOPs	  are	  not	  “Standard”	  (=	  opera*onal)	  products,	  they	  are	  
“Evalua*on”	  products	  

•  It’s	  probably	  *me	  for	  some	  of	  them	  to	  become	  “Standard”	  

products	  

•  No	  “perfect”	  IOP	  algorithm	  or	  model	  

•  There	  is	  room	  for	  improvement	  in	  terms	  of	  products	  and	  

spectral	  accuracy	  

•  Need	  more	  diverse	  and	  high	  quality	  in	  situ	  data	  





Can we improve the IOP models? 

Rrs(λ) = t
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aph(λ)	  	  =	  	  A(λ)	  Chl	  B(λ)	  	  	  	  	  	  acdm(λ)	  	  =	  	  acdm(443)	  exp(-‐S(λ	  -‐443))	  	  	  	  	  bbp(λ)	  	  =	  	  bbp(443)	  (λ	  /443)-‐
η	  

-‐  Replace	  some	  constant	  parameters	  by	  dynamic	  expressions	  (e.g.	  t/nw2,	  f/Q,	  S,	  η).	  	  
-‐  Improve	  phytoplankton	  absorp*on	  parameteriza*on	  through	  beder,	  bigger,	  

more	  diverse	  data	  sets	  

Challenges:	  
Highly	  non-‐linear	  
Dynamic	  parameteriza*on	  is	  not	  always	  obvious	  
S*ll	  some	  empiricism	  
What	  is	  best?	  	  

	  -‐	  High	  accuracy	  at	  1	  λ	  vs	  a	  lower	  but	  consistent	  accuracy	  at	  all	  λs?	  
	  -‐	  High	  accuracy	  for	  some	  products	  but	  lower	  accuracy	  for	  some	  others?	  
	  -‐	  High	  accuracy	  retrievals	  but	  poor	  spa*al	  and	  temporal	  coverage	  (filtering)	  
	  -‐	  ….	  


